About this recipe
Recipe Template
{
"id": "AQJ6QnF2yVdCWMnx",
"meta": {
"instanceId": "fb924c73af8f703905bc09c9ee8076f48c17b596ed05b18c0ff86915ef8a7c4a",
"templateCredsSetupCompleted": true
},
"name": "SQL agent with memory",
"tags": [],
"nodes": [
{
"id": "3544950e-4d8e-46ca-8f56-61c152a5cae3",
"name": "Window Buffer Memory",
"type": "@n8n\/n8n-nodes-langchain.memoryBufferWindow",
"position": [
1220,
500
],
"parameters": {
"contextWindowLength": 10
},
"typeVersion": 1.2
},
{
"id": "743cc4e7-5f24-4adc-b872-7241ee775bd0",
"name": "OpenAI Chat Model",
"type": "@n8n\/n8n-nodes-langchain.lmChatOpenAi",
"position": [
1000,
500
],
"parameters": {
"model": "gpt-4-turbo",
"options": {
"temperature": 0.3
}
},
"credentials": {
"openAiApi": {
"id": "rveqdSfp7pCRON1T",
"name": "Ted's Tech Talks OpenAi"
}
},
"typeVersion": 1
},
{
"id": "cc30066c-ad2c-4729-82c1-a6b0f4214dee",
"name": "When clicking \"Test workflow\"",
"type": "n8n-nodes-base.manualTrigger",
"position": [
500,
-80
],
"parameters": [],
"typeVersion": 1
},
{
"id": "0deacd0d-45cb-4738-8da0-9d1251858867",
"name": "Get chinook.zip example",
"type": "n8n-nodes-base.httpRequest",
"position": [
700,
-80
],
"parameters": {
"url": "https:\/\/www.sqlitetutorial.net\/wp-content\/uploads\/2018\/03\/chinook.zip",
"options": []
},
"typeVersion": 4.2
},
{
"id": "61f34708-f8ed-44a9-8522-6042d28511ae",
"name": "Extract zip file",
"type": "n8n-nodes-base.compression",
"position": [
900,
-80
],
"parameters": [],
"typeVersion": 1.1
},
{
"id": "6a12d9ac-f1b7-4267-8b34-58cdb9d347bb",
"name": "Save chinook.db locally",
"type": "n8n-nodes-base.readWriteFile",
"position": [
1100,
-80
],
"parameters": {
"options": [],
"fileName": ".\/chinook.db",
"operation": "write",
"dataPropertyName": "file_0"
},
"typeVersion": 1
},
{
"id": "701d1325-4186-4185-886a-3738163db603",
"name": "Load local chinook.db",
"type": "n8n-nodes-base.readWriteFile",
"position": [
620,
360
],
"parameters": {
"options": [],
"fileSelector": ".\/chinook.db"
},
"typeVersion": 1
},
{
"id": "d7b3813d-8180-4ff1-87a4-bd54a03043af",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
440,
-280.9454545454546
],
"parameters": {
"width": 834.3272727272731,
"height": 372.9454545454546,
"content": "## Run this part only once\nThis section:\n* downloads the example zip file from https:\/\/www.sqlitetutorial.net\/sqlite-sample-database\/\n* extracts the archive (it contains only a single file)\n* saves the extracted `chinook.db` SQLite database locally\n\nNow you can use chat to \"talk\" to your data!"
},
"typeVersion": 1
},
{
"id": "6bd25563-2c59-44c2-acf9-407bd28a15cf",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
400,
240
],
"parameters": {
"width": 558.5454545454544,
"height": 297.89090909090913,
"content": "## On every chat message:\n* the local SQLite database is loaded\n* JSON from Chat Trigger is combined with SQLite binary data"
},
"typeVersion": 1
},
{
"id": "2be63956-236e-46f7-b8e4-0f55e2e25a5c",
"name": "Combine chat input with the binary",
"type": "n8n-nodes-base.set",
"position": [
820,
360
],
"parameters": {
"mode": "raw",
"options": {
"includeBinary": true
},
"jsonOutput": "={{ $('Chat Trigger').item.json }}\n"
},
"typeVersion": 3.3
},
{
"id": "7f4c9adb-eab4-40d7-ad2e-44f2c0e3e30a",
"name": "Sticky Note2",
"type": "n8n-nodes-base.stickyNote",
"position": [
980,
120
],
"parameters": {
"width": 471.99692219161466,
"height": 511.16641410437836,
"content": "### LangChain SQL Agent can make several queries before producing the final answer.\nTry these examples:\n1. \"Please describe the database\". This input usually requires just 1 query + an extra observation to produce a final answer.\n2. \"What are the revenues by genre?\". This input will launch a series of Agent actions, because it needs to make several queries.\n\nThe final answer is stored in the memory and will be recalled on the next input from the user."
},
"typeVersion": 1
},
{
"id": "ac819eb5-13b2-4280-b9d6-06ec1209700e",
"name": "AI Agent",
"type": "@n8n\/n8n-nodes-langchain.agent",
"position": [
1020,
360
],
"parameters": {
"agent": "sqlAgent",
"options": [],
"dataSource": "sqlite"
},
"typeVersion": 1.6
},
{
"id": "5ecaa3eb-e93e-4e41-bbc0-98a8c2b2d463",
"name": "Chat Trigger",
"type": "@n8n\/n8n-nodes-langchain.chatTrigger",
"position": [
420,
360
],
"webhookId": "fb565f08-a459-4ff9-8249-1ede58599660",
"parameters": [],
"typeVersion": 1
}
],
"active": false,
"pinData": [],
"settings": {
"executionOrder": "v1"
},
"versionId": "fbc06ddd-dbd8-49ee-bbee-2f495d5651a2",
"connections": {
"Chat Trigger": {
"main": [
[
{
"node": "Load local chinook.db",
"type": "main",
"index": 0
}
]
]
},
"Extract zip file": {
"main": [
[
{
"node": "Save chinook.db locally",
"type": "main",
"index": 0
}
]
]
},
"OpenAI Chat Model": {
"ai_languageModel": [
[
{
"node": "AI Agent",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Window Buffer Memory": {
"ai_memory": [
[
{
"node": "AI Agent",
"type": "ai_memory",
"index": 0
}
]
]
},
"Load local chinook.db": {
"main": [
[
{
"node": "Combine chat input with the binary",
"type": "main",
"index": 0
}
]
]
},
"Get chinook.zip example": {
"main": [
[
{
"node": "Extract zip file",
"type": "main",
"index": 0
}
]
]
},
"When clicking \"Test workflow\"": {
"main": [
[
{
"node": "Get chinook.zip example",
"type": "main",
"index": 0
}
]
]
},
"Combine chat input with the binary": {
"main": [
[
{
"node": "AI Agent",
"type": "main",
"index": 0
}
]
]
}
}
}
How to Use an n8n Template
Create a New Workflow
Click "New Workflow" in your n8n dashboard to get started.
Copy & Paste Template
First, copy this template:
Click here to copy the JSON
.
Then, in n8n, click the three dots (···) → "Import from file" and paste the JSON code.
Customize the Nodes
Go through each node in the workflow to update inputs like spreadsheet IDs, email addresses, or message content. Adjust field mappings to match your data.
Grant Access
For nodes that connect to external apps (like Google Sheets or Slack), you'll need to grant access. Connect your accounts using OAuth or an API key and save the credentials in the node.
Test It
Run the workflow by clicking "Execute Node" for each step or "Run Once" for the whole thing. Check the right sidebar to inspect data and debug any errors (they'll show up in red).
Activate Workflow
Once everything works as expected, click the "Activate" toggle to turn your workflow on. You're all set!