About this recipe
Recipe Template
{
"id": "q2MJWAqpKF2BCJkq",
"meta": {
"instanceId": "021d3c82ba2d3bc090cbf4fc81c9312668bcc34297e022bb3438c5c88a43a5ff"
},
"name": "LangChain - Example - Code Node Example",
"tags": [
{
"id": "snf16n0p2UrGP838",
"name": "LangChain - Example",
"createdAt": "2023-09-25T16:21:55.962Z",
"updatedAt": "2023-09-25T16:21:55.962Z"
}
],
"nodes": [
{
"id": "ad1a920e-1048-4b58-9c4a-a0469a1f189d",
"name": "OpenAI",
"type": "@n8n\/n8n-nodes-langchain.lmOpenAi",
"position": [
900,
628
],
"parameters": {
"options": []
},
"credentials": {
"openAiApi": {
"id": "4jRB4A20cPycBqP5",
"name": "OpenAI account - n8n"
}
},
"typeVersion": 1
},
{
"id": "7dd04ecd-f169-455c-9c90-140140e37542",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
800,
340
],
"parameters": {
"width": 432,
"height": 237,
"content": "## Self-coded LLM Chain Node"
},
"typeVersion": 1
},
{
"id": "05ad7d68-5dc8-42f2-8274-fcb5bdeb68cb",
"name": "When clicking \"Execute Workflow\"",
"type": "n8n-nodes-base.manualTrigger",
"position": [
280,
428
],
"parameters": [],
"typeVersion": 1
},
{
"id": "39e2fd34-3261-44a1-aa55-96f169d55aad",
"name": "Set",
"type": "n8n-nodes-base.set",
"position": [
620,
428
],
"parameters": {
"values": {
"string": [
{
"name": "input",
"value": "Tell me a joke"
}
]
},
"options": []
},
"typeVersion": 2
},
{
"id": "42a3184c-0c62-4e79-9220-7a93e313317e",
"name": "Set1",
"type": "n8n-nodes-base.set",
"position": [
620,
820
],
"parameters": {
"values": {
"string": [
{
"name": "input",
"value": "What year was Einstein born?"
}
]
},
"options": []
},
"typeVersion": 2
},
{
"id": "4e2af29d-7fc4-484b-8028-1b9a84d60172",
"name": "Chat OpenAI",
"type": "@n8n\/n8n-nodes-langchain.lmChatOpenAi",
"position": [
731,
1108
],
"parameters": {
"options": []
},
"credentials": {
"openAiApi": {
"id": "4jRB4A20cPycBqP5",
"name": "OpenAI account - n8n"
}
},
"typeVersion": 1
},
{
"id": "334e9176-3a18-4838-84cb-70e8154f1a30",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
880,
1028
],
"parameters": {
"width": 320.2172923777021,
"height": 231,
"content": "## Self-coded Tool Node"
},
"typeVersion": 1
},
{
"id": "05e0d5c6-df18-42ba-99b6-a2b65633a14d",
"name": "Custom - Wikipedia",
"type": "@n8n\/n8n-nodes-langchain.code",
"position": [
971,
1108
],
"parameters": {
"code": {
"supplyData": {
"code": "console.log('Custom Wikipedia Node runs');\nconst { WikipediaQueryRun } = require('langchain\/tools');\nreturn new WikipediaQueryRun();"
}
},
"outputs": {
"output": [
{
"type": "ai_tool"
}
]
}
},
"typeVersion": 1
},
{
"id": "9c729e9a-f173-430c-8bcd-74101b614891",
"name": "Custom - LLM Chain Node",
"type": "@n8n\/n8n-nodes-langchain.code",
"position": [
880,
428
],
"parameters": {
"code": {
"execute": {
"code": "const { PromptTemplate } = require('langchain\/prompts');\n\nconst query = $input.item.json.input;\nconst prompt = PromptTemplate.fromTemplate(query);\nconst llm = await this.getInputConnectionData('ai_languageModel', 0);\nlet chain = prompt.pipe(llm);\nconst output = await chain.invoke();\nreturn [ {json: { output } } ];"
}
},
"inputs": {
"input": [
{
"type": "main"
},
{
"type": "ai_languageModel",
"required": true,
"maxConnections": 1
}
]
},
"outputs": {
"output": [
{
"type": "main"
}
]
}
},
"typeVersion": 1
},
{
"id": "6427bbf0-49a6-4810-9744-87d88151e914",
"name": "Agent",
"type": "@n8n\/n8n-nodes-langchain.agent",
"position": [
880,
820
],
"parameters": {
"options": []
},
"typeVersion": 1
}
],
"active": false,
"pinData": [],
"settings": {
"executionOrder": "v1"
},
"versionId": "e14a709d-08fe-4ed7-903a-fb2bae80b28a",
"connections": {
"Set": {
"main": [
[
{
"node": "Custom - LLM Chain Node",
"type": "main",
"index": 0
}
]
]
},
"Set1": {
"main": [
[
{
"node": "Agent",
"type": "main",
"index": 0
}
]
]
},
"OpenAI": {
"ai_languageModel": [
[
{
"node": "Custom - LLM Chain Node",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Chat OpenAI": {
"ai_languageModel": [
[
{
"node": "Agent",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Custom - Wikipedia": {
"ai_tool": [
[
{
"node": "Agent",
"type": "ai_tool",
"index": 0
}
]
]
},
"When clicking \"Execute Workflow\"": {
"main": [
[
{
"node": "Set",
"type": "main",
"index": 0
},
{
"node": "Set1",
"type": "main",
"index": 0
}
]
]
}
}
}
How to Use an n8n Template
Create a New Workflow
Click "New Workflow" in your n8n dashboard to get started.
Copy & Paste Template
First, copy this template:
Click here to copy the JSON
.
Then, in n8n, click the three dots (···) → "Import from file" and paste the JSON code.
Customize the Nodes
Go through each node in the workflow to update inputs like spreadsheet IDs, email addresses, or message content. Adjust field mappings to match your data.
Grant Access
For nodes that connect to external apps (like Google Sheets or Slack), you'll need to grant access. Connect your accounts using OAuth or an API key and save the credentials in the node.
Test It
Run the workflow by clicking "Execute Node" for each step or "Run Once" for the whole thing. Check the right sidebar to inspect data and debug any errors (they'll show up in red).
Activate Workflow
Once everything works as expected, click the "Activate" toggle to turn your workflow on. You're all set!