About this recipe
Recipe Template
{
"id": "FD0bHNaehP3LzCNN",
"meta": {
"instanceId": "69133932b9ba8e1ef14816d0b63297bb44feb97c19f759b5d153ff6b0c59e18d"
},
"name": "Chat with GitHub OpenAPI Specification using RAG (Pinecone and OpenAI)",
"tags": [],
"nodes": [
{
"id": "362cb773-7540-4753-a401-e585cdf4af8a",
"name": "When clicking \u2018Test workflow\u2019",
"type": "n8n-nodes-base.manualTrigger",
"position": [
0,
0
],
"parameters": [],
"typeVersion": 1
},
{
"id": "45470036-cae6-48d0-ac66-addc8999e776",
"name": "HTTP Request",
"type": "n8n-nodes-base.httpRequest",
"position": [
300,
0
],
"parameters": {
"url": "https:\/\/raw.githubusercontent.com\/github\/rest-api-description\/refs\/heads\/main\/descriptions\/api.github.com\/api.github.com.json",
"options": []
},
"typeVersion": 4.2
},
{
"id": "a9e65897-52c9-4941-bf49-e1a659e442ef",
"name": "Pinecone Vector Store",
"type": "@n8n\/n8n-nodes-langchain.vectorStorePinecone",
"position": [
520,
0
],
"parameters": {
"mode": "insert",
"options": [],
"pineconeIndex": {
"__rl": true,
"mode": "list",
"value": "n8n-demo",
"cachedResultName": "n8n-demo"
}
},
"credentials": {
"pineconeApi": {
"id": "bQTNry52ypGLqt47",
"name": "PineconeApi account"
}
},
"typeVersion": 1
},
{
"id": "c2a2354b-5457-4ceb-abfc-9a58e8593b81",
"name": "Default Data Loader",
"type": "@n8n\/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
660,
180
],
"parameters": {
"options": []
},
"typeVersion": 1
},
{
"id": "7338d9ea-ae8f-46eb-807f-a15dc7639fc9",
"name": "Recursive Character Text Splitter",
"type": "@n8n\/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
"position": [
740,
360
],
"parameters": {
"options": []
},
"typeVersion": 1
},
{
"id": "44fd7a59-f208-4d5d-a22d-e9f8ca9badf1",
"name": "When chat message received",
"type": "@n8n\/n8n-nodes-langchain.chatTrigger",
"position": [
-20,
760
],
"webhookId": "089e38ab-4eee-4c34-aa5d-54cf4a8f53b7",
"parameters": {
"options": []
},
"typeVersion": 1.1
},
{
"id": "51d819d6-70ff-428d-aa56-1d7e06490dee",
"name": "AI Agent",
"type": "@n8n\/n8n-nodes-langchain.agent",
"position": [
320,
760
],
"parameters": {
"options": {
"systemMessage": "You are a helpful assistant providing information about the GitHub API and how to use it based on the OpenAPI V3 specifications."
}
},
"typeVersion": 1.7
},
{
"id": "aed548bf-7083-44ad-a3e0-163dee7423ef",
"name": "OpenAI Chat Model",
"type": "@n8n\/n8n-nodes-langchain.lmChatOpenAi",
"position": [
220,
980
],
"parameters": {
"options": []
},
"credentials": {
"openAiApi": {
"id": "tQLWnWRzD8aebYvp",
"name": "OpenAi account"
}
},
"typeVersion": 1.1
},
{
"id": "dfe9f356-2225-4f4b-86c7-e56a230b4193",
"name": "Window Buffer Memory",
"type": "@n8n\/n8n-nodes-langchain.memoryBufferWindow",
"position": [
420,
1020
],
"parameters": [],
"typeVersion": 1.3
},
{
"id": "4cf672ee-13b8-4355-b8e0-c2e7381671bc",
"name": "Vector Store Tool",
"type": "@n8n\/n8n-nodes-langchain.toolVectorStore",
"position": [
580,
980
],
"parameters": {
"name": "GitHub_OpenAPI_Specification",
"description": "Use this tool to get information about the GitHub API. This database contains OpenAPI v3 specifications."
},
"typeVersion": 1
},
{
"id": "1df7fb85-9d4a-4db5-9bed-41d28e2e4643",
"name": "OpenAI Chat Model1",
"type": "@n8n\/n8n-nodes-langchain.lmChatOpenAi",
"position": [
840,
1160
],
"parameters": {
"options": []
},
"credentials": {
"openAiApi": {
"id": "tQLWnWRzD8aebYvp",
"name": "OpenAi account"
}
},
"typeVersion": 1.1
},
{
"id": "7b52ef7a-5935-451e-8747-efe16ce288af",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
-40,
-260
],
"parameters": {
"width": 640,
"height": 200,
"content": "## Indexing content in the vector database\nThis part of the workflow is responsible for extracting content, generating embeddings and sending them to the Pinecone vector store.\n\nIt requests the OpenAPI specifications from GitHub using a HTTP request. Then, it splits the file in chunks, generating embeddings for each chunk using OpenAI, and saving them in Pinecone vector DB."
},
"typeVersion": 1
},
{
"id": "3508d602-56d4-4818-84eb-ca75cdeec1d0",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
-20,
560
],
"parameters": {
"width": 580,
"content": "## Querying and response generation \n\nThis part of the workflow is responsible for the chat interface, querying the vector store and generating relevant responses.\n\nIt uses OpenAI GPT 4o-mini to generate responses."
},
"typeVersion": 1
},
{
"id": "5a9808ef-4edd-4ec9-ba01-2fe50b2dbf4b",
"name": "Generate User Query Embedding",
"type": "@n8n\/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
480,
1400
],
"parameters": {
"options": []
},
"credentials": {
"openAiApi": {
"id": "tQLWnWRzD8aebYvp",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "f703dc8e-9d4b-45e3-8994-789b3dfe8631",
"name": "Pinecone Vector Store (Querying)",
"type": "@n8n\/n8n-nodes-langchain.vectorStorePinecone",
"position": [
440,
1220
],
"parameters": {
"options": [],
"pineconeIndex": {
"__rl": true,
"mode": "list",
"value": "n8n-demo",
"cachedResultName": "n8n-demo"
}
},
"credentials": {
"pineconeApi": {
"id": "bQTNry52ypGLqt47",
"name": "PineconeApi account"
}
},
"typeVersion": 1
},
{
"id": "ea64a7a5-1fa5-4938-83a9-271929733a8e",
"name": "Generate Embeddings",
"type": "@n8n\/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
480,
220
],
"parameters": {
"options": []
},
"credentials": {
"openAiApi": {
"id": "tQLWnWRzD8aebYvp",
"name": "OpenAi account"
}
},
"typeVersion": 1.2
},
{
"id": "65cbd4e3-91f6-441a-9ef1-528c3019e238",
"name": "Sticky Note2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-820,
-260
],
"parameters": {
"width": 620,
"height": 320,
"content": "## RAG workflow in n8n\n\nThis is an example of how to use RAG techniques to create a chatbot with n8n. It is an API documentation chatbot that can answer questions about the GitHub API. It uses OpenAI for generating embeddings, the gpt-4o-mini LLM for generating responses and Pinecone as a vector database.\n\n### Before using this template\n* create OpenAI and Pinecone accounts\n* obtain API keys OpenAI and Pinecone \n* configure credentials in n8n for both\n* ensure you have a Pinecone index named \"n8n-demo\" or adjust the workflow accordingly."
},
"typeVersion": 1
}
],
"active": false,
"pinData": [],
"settings": {
"executionOrder": "v1"
},
"versionId": "2908105f-c20c-4183-bb9d-26e3559b9911",
"connections": {
"HTTP Request": {
"main": [
[
{
"node": "Pinecone Vector Store",
"type": "main",
"index": 0
}
]
]
},
"OpenAI Chat Model": {
"ai_languageModel": [
[
{
"node": "AI Agent",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Vector Store Tool": {
"ai_tool": [
[
{
"node": "AI Agent",
"type": "ai_tool",
"index": 0
}
]
]
},
"OpenAI Chat Model1": {
"ai_languageModel": [
[
{
"node": "Vector Store Tool",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Default Data Loader": {
"ai_document": [
[
{
"node": "Pinecone Vector Store",
"type": "ai_document",
"index": 0
}
]
]
},
"Generate Embeddings": {
"ai_embedding": [
[
{
"node": "Pinecone Vector Store",
"type": "ai_embedding",
"index": 0
}
]
]
},
"Window Buffer Memory": {
"ai_memory": [
[
{
"node": "AI Agent",
"type": "ai_memory",
"index": 0
}
]
]
},
"When chat message received": {
"main": [
[
{
"node": "AI Agent",
"type": "main",
"index": 0
}
]
]
},
"Generate User Query Embedding": {
"ai_embedding": [
[
{
"node": "Pinecone Vector Store (Querying)",
"type": "ai_embedding",
"index": 0
}
]
]
},
"Pinecone Vector Store (Querying)": {
"ai_vectorStore": [
[
{
"node": "Vector Store Tool",
"type": "ai_vectorStore",
"index": 0
}
]
]
},
"Recursive Character Text Splitter": {
"ai_textSplitter": [
[
{
"node": "Default Data Loader",
"type": "ai_textSplitter",
"index": 0
}
]
]
},
"When clicking \u2018Test workflow\u2019": {
"main": [
[
{
"node": "HTTP Request",
"type": "main",
"index": 0
}
]
]
}
}
}
How to Use an n8n Template
Create a New Workflow
Click "New Workflow" in your n8n dashboard to get started.
Copy & Paste Template
First, copy this template:
Click here to copy the JSON
.
Then, in n8n, click the three dots (···) → "Import from file" and paste the JSON code.
Customize the Nodes
Go through each node in the workflow to update inputs like spreadsheet IDs, email addresses, or message content. Adjust field mappings to match your data.
Grant Access
For nodes that connect to external apps (like Google Sheets or Slack), you'll need to grant access. Connect your accounts using OAuth or an API key and save the credentials in the node.
Test It
Run the workflow by clicking "Execute Node" for each step or "Run Once" for the whole thing. Check the right sidebar to inspect data and debug any errors (they'll show up in red).
Activate Workflow
Once everything works as expected, click the "Activate" toggle to turn your workflow on. You're all set!