Building Rag Chatbot For Movie Recommendations With Qdrant And Open Ai

1 Tools

Explore Tool Categories

Find Agencies for This Project

Know a Better Recipe?

Help the community by sharing your proven tool combinations.

Submit a Recipe

About this recipe

A recipe for Building Rag Chatbot For Movie Recommendations With Qdrant And Open Ai

Recipe Template

{
    "id": "a58HZKwcOy7lmz56",
    "meta": {
        "instanceId": "178ef8a5109fc76c716d40bcadb720c455319f7b7a3fd5a39e4f336a091f524a",
        "templateCredsSetupCompleted": true
    },
    "name": "Building RAG Chatbot for Movie Recommendations with Qdrant and Open AI",
    "tags": [],
    "nodes": [
        {
            "id": "06a34e3b-519a-4b48-afd0-4f2b51d2105d",
            "name": "When clicking \u2018Test workflow\u2019",
            "type": "n8n-nodes-base.manualTrigger",
            "position": [
                4980,
                740
            ],
            "parameters": [],
            "typeVersion": 1
        },
        {
            "id": "9213003d-433f-41ab-838b-be93860261b2",
            "name": "GitHub",
            "type": "n8n-nodes-base.github",
            "position": [
                5200,
                740
            ],
            "parameters": {
                "owner": {
                    "__rl": true,
                    "mode": "name",
                    "value": "mrscoopers"
                },
                "filePath": "Top_1000_IMDB_movies.csv",
                "resource": "file",
                "operation": "get",
                "repository": {
                    "__rl": true,
                    "mode": "list",
                    "value": "n8n_demo",
                    "cachedResultUrl": "https:\/\/github.com\/mrscoopers\/n8n_demo",
                    "cachedResultName": "n8n_demo"
                },
                "additionalParameters": []
            },
            "credentials": {
                "githubApi": {
                    "id": "VbfC0mqEq24vPIwq",
                    "name": "GitHub n8n demo"
                }
            },
            "typeVersion": 1
        },
        {
            "id": "9850d1a9-3a6f-44c0-9f9d-4d20fda0b602",
            "name": "Extract from File",
            "type": "n8n-nodes-base.extractFromFile",
            "position": [
                5360,
                740
            ],
            "parameters": {
                "options": []
            },
            "typeVersion": 1
        },
        {
            "id": "7704f993-b1c9-477a-8b5a-77dc2cb68161",
            "name": "Embeddings OpenAI",
            "type": "@n8n\/n8n-nodes-langchain.embeddingsOpenAi",
            "position": [
                5560,
                940
            ],
            "parameters": {
                "model": "text-embedding-3-small",
                "options": []
            },
            "credentials": {
                "openAiApi": {
                    "id": "deYJUwkgL1Euu613",
                    "name": "OpenAi account 2"
                }
            },
            "typeVersion": 1
        },
        {
            "id": "bc6dd8e5-0186-4bf9-9c60-2eab6d9b6520",
            "name": "Default Data Loader",
            "type": "@n8n\/n8n-nodes-langchain.documentDefaultDataLoader",
            "position": [
                5700,
                960
            ],
            "parameters": {
                "options": {
                    "metadata": {
                        "metadataValues": [
                            {
                                "name": "movie_name",
                                "value": "={{ $('Extract from File').item.json['Movie Name'] }}"
                            },
                            {
                                "name": "movie_release_date",
                                "value": "={{ $('Extract from File').item.json['Year of Release'] }}"
                            },
                            {
                                "name": "movie_description",
                                "value": "={{ $('Extract from File').item.json.Description }}"
                            }
                        ]
                    }
                },
                "jsonData": "={{ $('Extract from File').item.json.Description }}",
                "jsonMode": "expressionData"
            },
            "typeVersion": 1
        },
        {
            "id": "f87ea014-fe79-444b-88ea-0c4773872b0a",
            "name": "Token Splitter",
            "type": "@n8n\/n8n-nodes-langchain.textSplitterTokenSplitter",
            "position": [
                5700,
                1140
            ],
            "parameters": [],
            "typeVersion": 1
        },
        {
            "id": "d8d28cec-c8e8-4350-9e98-cdbc6da54988",
            "name": "Qdrant Vector Store",
            "type": "@n8n\/n8n-nodes-langchain.vectorStoreQdrant",
            "position": [
                5600,
                740
            ],
            "parameters": {
                "mode": "insert",
                "options": [],
                "qdrantCollection": {
                    "__rl": true,
                    "mode": "id",
                    "value": "imdb"
                }
            },
            "credentials": {
                "qdrantApi": {
                    "id": "Zin08PA0RdXVUKK7",
                    "name": "QdrantApi n8n demo"
                }
            },
            "typeVersion": 1
        },
        {
            "id": "f86e03dc-12ea-4929-9035-4ec3cf46e300",
            "name": "When chat message received",
            "type": "@n8n\/n8n-nodes-langchain.chatTrigger",
            "position": [
                4920,
                1140
            ],
            "webhookId": "71bfe0f8-227e-466b-9d07-69fd9fe4a27b",
            "parameters": {
                "options": []
            },
            "typeVersion": 1.1
        },
        {
            "id": "ead23ef6-2b6b-428d-b412-b3394bff8248",
            "name": "OpenAI Chat Model",
            "type": "@n8n\/n8n-nodes-langchain.lmChatOpenAi",
            "position": [
                5040,
                1340
            ],
            "parameters": {
                "model": "gpt-4o-mini",
                "options": []
            },
            "credentials": {
                "openAiApi": {
                    "id": "deYJUwkgL1Euu613",
                    "name": "OpenAi account 2"
                }
            },
            "typeVersion": 1
        },
        {
            "id": "7ab936e1-aac8-43bc-a497-f2d02c2c19e5",
            "name": "Call n8n Workflow Tool",
            "type": "@n8n\/n8n-nodes-langchain.toolWorkflow",
            "position": [
                5320,
                1340
            ],
            "parameters": {
                "name": "movie_recommender",
                "schemaType": "manual",
                "workflowId": {
                    "__rl": true,
                    "mode": "id",
                    "value": "a58HZKwcOy7lmz56"
                },
                "description": "Call this tool to get a list of recommended movies from a vector database. ",
                "inputSchema": "{\n\"type\": \"object\",\n\"properties\": {\n\t\"positive_example\": {\n \"type\": \"string\",\n \"description\": \"A string with a movie description matching the user's positive recommendation request\"\n },\n \"negative_example\": {\n \"type\": \"string\",\n \"description\": \"A string with a movie description matching the user's negative anti-recommendation reuqest\"\n }\n}\n}",
                "specifyInputSchema": true
            },
            "typeVersion": 1.2
        },
        {
            "id": "ce55f334-698b-45b1-9e12-0eaa473187d4",
            "name": "Window Buffer Memory",
            "type": "@n8n\/n8n-nodes-langchain.memoryBufferWindow",
            "position": [
                5160,
                1340
            ],
            "parameters": [],
            "typeVersion": 1.2
        },
        {
            "id": "41c1ee11-3117-4765-98fc-e56cc6fc8fb2",
            "name": "Execute Workflow Trigger",
            "type": "n8n-nodes-base.executeWorkflowTrigger",
            "position": [
                5640,
                1600
            ],
            "parameters": [],
            "typeVersion": 1
        },
        {
            "id": "db8d6ab6-8cd2-4a8c-993d-f1b7d7fdcffd",
            "name": "Merge",
            "type": "n8n-nodes-base.merge",
            "position": [
                6540,
                1500
            ],
            "parameters": {
                "mode": "combine",
                "options": [],
                "combineBy": "combineAll"
            },
            "typeVersion": 3
        },
        {
            "id": "c7bc5e04-22b1-40db-ba74-1ab234e51375",
            "name": "Split Out",
            "type": "n8n-nodes-base.splitOut",
            "position": [
                7260,
                1480
            ],
            "parameters": {
                "options": [],
                "fieldToSplitOut": "result"
            },
            "typeVersion": 1
        },
        {
            "id": "a2002d2e-362a-49eb-a42d-7b665ddd67a0",
            "name": "Split Out1",
            "type": "n8n-nodes-base.splitOut",
            "position": [
                7140,
                1260
            ],
            "parameters": {
                "options": [],
                "fieldToSplitOut": "result.points"
            },
            "typeVersion": 1
        },
        {
            "id": "f69a87f1-bfb9-4337-9350-28d2416c1580",
            "name": "Merge1",
            "type": "n8n-nodes-base.merge",
            "position": [
                7520,
                1400
            ],
            "parameters": {
                "mode": "combine",
                "options": [],
                "fieldsToMatchString": "id"
            },
            "typeVersion": 3
        },
        {
            "id": "b2f2529e-e260-4d72-88ef-09b804226004",
            "name": "Aggregate",
            "type": "n8n-nodes-base.aggregate",
            "position": [
                7960,
                1400
            ],
            "parameters": {
                "options": [],
                "aggregate": "aggregateAllItemData",
                "destinationFieldName": "response"
            },
            "typeVersion": 1
        },
        {
            "id": "bedea10f-b4de-4f0e-9d60-cc8117a2b328",
            "name": "AI Agent",
            "type": "@n8n\/n8n-nodes-langchain.agent",
            "position": [
                5140,
                1140
            ],
            "parameters": {
                "options": {
                    "systemMessage": "You are a Movie Recommender Tool using a Vector Database under the hood. Provide top-3 movie recommendations returned by the database, ordered by their recommendation score, but not showing the score to the user."
                }
            },
            "typeVersion": 1.6
        },
        {
            "id": "e04276b5-7d69-437b-bf4f-9717808cc8f6",
            "name": "Embedding Recommendation Request with Open AI",
            "type": "n8n-nodes-base.httpRequest",
            "position": [
                5900,
                1460
            ],
            "parameters": {
                "url": "https:\/\/api.openai.com\/v1\/embeddings",
                "method": "POST",
                "options": [],
                "sendBody": true,
                "sendHeaders": true,
                "authentication": "predefinedCredentialType",
                "bodyParameters": {
                    "parameters": [
                        {
                            "name": "input",
                            "value": "={{ $json.query.positive_example }}"
                        },
                        {
                            "name": "model",
                            "value": "text-embedding-3-small"
                        }
                    ]
                },
                "headerParameters": {
                    "parameters": [
                        {
                            "name": "Authorization",
                            "value": "Bearer $OPENAI_API_KEY"
                        }
                    ]
                },
                "nodeCredentialType": "openAiApi"
            },
            "credentials": {
                "openAiApi": {
                    "id": "deYJUwkgL1Euu613",
                    "name": "OpenAi account 2"
                }
            },
            "typeVersion": 4.2
        },
        {
            "id": "68e99f06-82f5-432c-8b31-8a1ae34981a6",
            "name": "Embedding Anti-Recommendation Request with Open AI",
            "type": "n8n-nodes-base.httpRequest",
            "position": [
                5920,
                1660
            ],
            "parameters": {
                "url": "https:\/\/api.openai.com\/v1\/embeddings",
                "method": "POST",
                "options": [],
                "sendBody": true,
                "sendHeaders": true,
                "authentication": "predefinedCredentialType",
                "bodyParameters": {
                    "parameters": [
                        {
                            "name": "input",
                            "value": "={{ $json.query.negative_example }}"
                        },
                        {
                            "name": "model",
                            "value": "text-embedding-3-small"
                        }
                    ]
                },
                "headerParameters": {
                    "parameters": [
                        {
                            "name": "Authorization",
                            "value": "Bearer $OPENAI_API_KEY"
                        }
                    ]
                },
                "nodeCredentialType": "openAiApi"
            },
            "credentials": {
                "openAiApi": {
                    "id": "deYJUwkgL1Euu613",
                    "name": "OpenAi account 2"
                }
            },
            "typeVersion": 4.2
        },
        {
            "id": "ecb1d7e1-b389-48e8-a34a-176bfc923641",
            "name": "Extracting Embedding",
            "type": "n8n-nodes-base.set",
            "position": [
                6180,
                1460
            ],
            "parameters": {
                "options": [],
                "assignments": {
                    "assignments": [
                        {
                            "id": "01a28c9d-aeb1-48bb-8a73-f8bddbd73460",
                            "name": "positive_example",
                            "type": "array",
                            "value": "={{ $json.data[0].embedding }}"
                        }
                    ]
                }
            },
            "typeVersion": 3.4
        },
        {
            "id": "4ed11142-a734-435f-9f7a-f59e2d423076",
            "name": "Extracting Embedding1",
            "type": "n8n-nodes-base.set",
            "position": [
                6180,
                1660
            ],
            "parameters": {
                "options": [],
                "assignments": {
                    "assignments": [
                        {
                            "id": "01a28c9d-aeb1-48bb-8a73-f8bddbd73460",
                            "name": "negative_example",
                            "type": "array",
                            "value": "={{ $json.data[0].embedding }}"
                        }
                    ]
                }
            },
            "typeVersion": 3.4
        },
        {
            "id": "ce3aa9bc-a5b1-4529-bff5-e0dba43b99f3",
            "name": "Calling Qdrant Recommendation API",
            "type": "n8n-nodes-base.httpRequest",
            "position": [
                6840,
                1500
            ],
            "parameters": {
                "url": "https:\/\/edcc6735-2ffb-484f-b735-3467043828fe.europe-west3-0.gcp.cloud.qdrant.io:6333\/collections\/imdb_1000_open_ai\/points\/query",
                "method": "POST",
                "options": [],
                "jsonBody": "={\n \"query\": {\n \"recommend\": {\n \"positive\": [[{{ $json.positive_example }}]],\n \"negative\": [[{{ $json.negative_example }}]],\n \"strategy\": \"average_vector\"\n }\n },\n \"limit\":3\n}",
                "sendBody": true,
                "specifyBody": "json",
                "authentication": "predefinedCredentialType",
                "nodeCredentialType": "qdrantApi"
            },
            "credentials": {
                "qdrantApi": {
                    "id": "Zin08PA0RdXVUKK7",
                    "name": "QdrantApi n8n demo"
                }
            },
            "typeVersion": 4.2
        },
        {
            "id": "9b8a6bdb-16fe-4edc-86d0-136fe059a777",
            "name": "Retrieving Recommended Movies Meta Data",
            "type": "n8n-nodes-base.httpRequest",
            "position": [
                7060,
                1460
            ],
            "parameters": {
                "url": "https:\/\/edcc6735-2ffb-484f-b735-3467043828fe.europe-west3-0.gcp.cloud.qdrant.io:6333\/collections\/imdb_1000_open_ai\/points",
                "method": "POST",
                "options": [],
                "jsonBody": "={\n \"ids\": [\"{{ $json.result.points[0].id }}\", \"{{ $json.result.points[1].id }}\", \"{{ $json.result.points[2].id }}\"],\n \"with_payload\":true\n}",
                "sendBody": true,
                "specifyBody": "json",
                "authentication": "predefinedCredentialType",
                "nodeCredentialType": "qdrantApi"
            },
            "credentials": {
                "qdrantApi": {
                    "id": "Zin08PA0RdXVUKK7",
                    "name": "QdrantApi n8n demo"
                }
            },
            "typeVersion": 4.2
        },
        {
            "id": "28cdcad5-3dca-48a1-b626-19eef657114c",
            "name": "Selecting Fields Relevant for Agent",
            "type": "n8n-nodes-base.set",
            "position": [
                7740,
                1400
            ],
            "parameters": {
                "options": [],
                "assignments": {
                    "assignments": [
                        {
                            "id": "b4b520a5-d0e2-4dcb-af9d-0b7748fd44d6",
                            "name": "movie_recommendation_score",
                            "type": "number",
                            "value": "={{ $json.score }}"
                        },
                        {
                            "id": "c9f0982e-bd4e-484b-9eab-7e69e333f706",
                            "name": "movie_description",
                            "type": "string",
                            "value": "={{ $json.payload.content }}"
                        },
                        {
                            "id": "7c7baf11-89cd-4695-9f37-13eca7e01163",
                            "name": "movie_name",
                            "type": "string",
                            "value": "={{ $json.payload.metadata.movie_name }}"
                        },
                        {
                            "id": "1d1d269e-43c7-47b0-859b-268adf2dbc21",
                            "name": "movie_release_year",
                            "type": "string",
                            "value": "={{ $json.payload.metadata.release_year }}"
                        }
                    ]
                }
            },
            "typeVersion": 3.4
        },
        {
            "id": "56e73f01-5557-460a-9a63-01357a1b456f",
            "name": "Sticky Note",
            "type": "n8n-nodes-base.stickyNote",
            "position": [
                5560,
                1780
            ],
            "parameters": {
                "content": "Tool, calling Qdrant's recommendation API based on user's request, transformed by AI agent"
            },
            "typeVersion": 1
        },
        {
            "id": "cce5250e-0285-4fd0-857f-4b117151cd8b",
            "name": "Sticky Note1",
            "type": "n8n-nodes-base.stickyNote",
            "position": [
                4680,
                720
            ],
            "parameters": {
                "content": "Uploading data (movies and their descriptions) to Qdrant Vector Store\n"
            },
            "typeVersion": 1
        }
    ],
    "active": false,
    "pinData": {
        "Execute Workflow Trigger": [
            {
                "json": {
                    "query": {
                        "negative_example": "horror bloody movie",
                        "positive_example": "romantic comedy"
                    }
                }
            }
        ]
    },
    "settings": {
        "executionOrder": "v1"
    },
    "versionId": "40d3669b-d333-435f-99fc-db623deda2cb",
    "connections": {
        "Merge": {
            "main": [
                [
                    {
                        "node": "Calling Qdrant Recommendation API",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "GitHub": {
            "main": [
                [
                    {
                        "node": "Extract from File",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Merge1": {
            "main": [
                [
                    {
                        "node": "Selecting Fields Relevant for Agent",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Split Out": {
            "main": [
                [
                    {
                        "node": "Merge1",
                        "type": "main",
                        "index": 1
                    }
                ]
            ]
        },
        "Split Out1": {
            "main": [
                [
                    {
                        "node": "Merge1",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Token Splitter": {
            "ai_textSplitter": [
                [
                    {
                        "node": "Default Data Loader",
                        "type": "ai_textSplitter",
                        "index": 0
                    }
                ]
            ]
        },
        "Embeddings OpenAI": {
            "ai_embedding": [
                [
                    {
                        "node": "Qdrant Vector Store",
                        "type": "ai_embedding",
                        "index": 0
                    }
                ]
            ]
        },
        "Extract from File": {
            "main": [
                [
                    {
                        "node": "Qdrant Vector Store",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "OpenAI Chat Model": {
            "ai_languageModel": [
                [
                    {
                        "node": "AI Agent",
                        "type": "ai_languageModel",
                        "index": 0
                    }
                ]
            ]
        },
        "Default Data Loader": {
            "ai_document": [
                [
                    {
                        "node": "Qdrant Vector Store",
                        "type": "ai_document",
                        "index": 0
                    }
                ]
            ]
        },
        "Extracting Embedding": {
            "main": [
                [
                    {
                        "node": "Merge",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Window Buffer Memory": {
            "ai_memory": [
                [
                    {
                        "node": "AI Agent",
                        "type": "ai_memory",
                        "index": 0
                    }
                ]
            ]
        },
        "Extracting Embedding1": {
            "main": [
                [
                    {
                        "node": "Merge",
                        "type": "main",
                        "index": 1
                    }
                ]
            ]
        },
        "Call n8n Workflow Tool": {
            "ai_tool": [
                [
                    {
                        "node": "AI Agent",
                        "type": "ai_tool",
                        "index": 0
                    }
                ]
            ]
        },
        "Execute Workflow Trigger": {
            "main": [
                [
                    {
                        "node": "Embedding Recommendation Request with Open AI",
                        "type": "main",
                        "index": 0
                    },
                    {
                        "node": "Embedding Anti-Recommendation Request with Open AI",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "When chat message received": {
            "main": [
                [
                    {
                        "node": "AI Agent",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Calling Qdrant Recommendation API": {
            "main": [
                [
                    {
                        "node": "Retrieving Recommended Movies Meta Data",
                        "type": "main",
                        "index": 0
                    },
                    {
                        "node": "Split Out1",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "When clicking \u2018Test workflow\u2019": {
            "main": [
                [
                    {
                        "node": "GitHub",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Selecting Fields Relevant for Agent": {
            "main": [
                [
                    {
                        "node": "Aggregate",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Retrieving Recommended Movies Meta Data": {
            "main": [
                [
                    {
                        "node": "Split Out",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Embedding Recommendation Request with Open AI": {
            "main": [
                [
                    {
                        "node": "Extracting Embedding",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Embedding Anti-Recommendation Request with Open AI": {
            "main": [
                [
                    {
                        "node": "Extracting Embedding1",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        }
    }
}

How to Use an n8n Template

1

Create a New Workflow

Click "New Workflow" in your n8n dashboard to get started.

2

Copy & Paste Template

First, copy this template: Click here to copy the JSON .
Then, in n8n, click the three dots (···) → "Import from file" and paste the JSON code.

3

Customize the Nodes

Go through each node in the workflow to update inputs like spreadsheet IDs, email addresses, or message content. Adjust field mappings to match your data.

4

Grant Access

For nodes that connect to external apps (like Google Sheets or Slack), you'll need to grant access. Connect your accounts using OAuth or an API key and save the credentials in the node.

5

Test It

Run the workflow by clicking "Execute Node" for each step or "Run Once" for the whole thing. Check the right sidebar to inspect data and debug any errors (they'll show up in red).

6

Activate Workflow

Once everything works as expected, click the "Activate" toggle to turn your workflow on. You're all set!