About this recipe
Recipe Template
{
"meta": {
"instanceId": "62b3b6db4f4d3641a1fa1da6dfb9699a19380a1f60cbc18fc75d6d145f35552b"
},
"nodes": [
{
"id": "40bb5497-d1d2-4eb7-b683-78b88c8d9230",
"name": "Google Drive",
"type": "n8n-nodes-base.googleDrive",
"position": [
496.83478320435574,
520
],
"parameters": {
"fileId": {
"__rl": true,
"mode": "url",
"value": "https:\/\/drive.google.com\/file\/d\/11Koq9q53nkk0F5Y8eZgaWJUVR03I4-MM\/view"
},
"options": [],
"operation": "download"
},
"credentials": {
"googleDriveOAuth2Api": {
"id": "20",
"name": "Google Drive account"
}
},
"typeVersion": 3
},
{
"id": "1323d520-1528-4a5a-9806-8f4f45306098",
"name": "Recursive Character Text Splitter",
"type": "@n8n\/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
"position": [
996.8347832043557,
920
],
"parameters": {
"chunkSize": 3000,
"chunkOverlap": 200
},
"typeVersion": 1
},
{
"id": "796b155a-64e6-4a52-9168-a37c68077d99",
"name": "Embeddings OpenAI",
"type": "@n8n\/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
836.8347832043557,
740
],
"parameters": {
"options": []
},
"credentials": {
"openAiApi": {
"id": "JCgD7807AQpe8Xge",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "dbe42c28-6f0b-4999-8372-0b42f6fb5916",
"name": "Sticky Note",
"type": "n8n-nodes-base.stickyNote",
"position": [
260,
420
],
"parameters": {
"color": 7,
"width": 978.0454109366399,
"height": 806.6556079800943,
"content": "### Load data into database\nFetch file from Google Drive, split it into chunks and insert into Pinecone index"
},
"typeVersion": 1
},
{
"id": "43dc3736-834d-4322-8fd2-7826b0208c4b",
"name": "Sticky Note1",
"type": "n8n-nodes-base.stickyNote",
"position": [
1520,
420
],
"parameters": {
"color": 7,
"width": 654.1028019808174,
"height": 806.8716167324012,
"content": "### Chat with database\nEmbed the incoming chat message and use it retrieve relevant chunks from the vector store. These are passed to the model to formulate an answer "
},
"typeVersion": 1
},
{
"id": "53b18460-8ad6-425a-a01f-c2295cfddde8",
"name": "Default Data Loader",
"type": "@n8n\/n8n-nodes-langchain.documentDefaultDataLoader",
"position": [
996.8347832043557,
740
],
"parameters": {
"options": [],
"dataType": "binary"
},
"typeVersion": 1
},
{
"id": "e729a021-eab3-48fa-a818-457efcaeebb2",
"name": "Sticky Note2",
"type": "n8n-nodes-base.stickyNote",
"position": [
-20,
740
],
"parameters": {
"height": 264.61498034081166,
"content": "## Try me out\n1. In Pinecone, create an index with 1536 dimensions and select it in *both* Pinecone nodes\n2. Click 'test workflow' at the bottom of the canvas to load data into the vector store\n3. Click 'chat' at the bottom of the canvas to ask questions about the data"
},
"typeVersion": 1
},
{
"id": "3e17c89c-620d-4892-b944-d792e48e3772",
"name": "Question and Answer Chain",
"type": "@n8n\/n8n-nodes-langchain.chainRetrievalQa",
"position": [
1560,
521
],
"parameters": [],
"typeVersion": 1.2
},
{
"id": "516507f9-d0d9-4975-85d0-a7852ee41518",
"name": "OpenAI Chat Model",
"type": "@n8n\/n8n-nodes-langchain.lmChatOpenAi",
"position": [
1560,
741
],
"parameters": {
"options": []
},
"credentials": {
"openAiApi": {
"id": "JCgD7807AQpe8Xge",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "8b0a5d26-a60a-40ab-8200-72f542532096",
"name": "Embeddings OpenAI2",
"type": "@n8n\/n8n-nodes-langchain.embeddingsOpenAi",
"position": [
1700,
1081
],
"parameters": {
"options": []
},
"credentials": {
"openAiApi": {
"id": "JCgD7807AQpe8Xge",
"name": "OpenAi account"
}
},
"typeVersion": 1
},
{
"id": "07f61d20-cf50-48e8-9d34-92244af436cb",
"name": "Vector Store Retriever",
"type": "@n8n\/n8n-nodes-langchain.retrieverVectorStore",
"position": [
1760,
741
],
"parameters": [],
"typeVersion": 1
},
{
"id": "0777de17-99a0-499a-b71f-245d5f76642e",
"name": "Read Pinecone Vector Store",
"type": "@n8n\/n8n-nodes-langchain.vectorStorePinecone",
"position": [
1700,
921
],
"parameters": {
"options": [],
"pineconeIndex": {
"__rl": true,
"mode": "list",
"value": "test-index",
"cachedResultName": "test-index"
}
},
"credentials": {
"pineconeApi": {
"id": "Pp5aPt4JWBkDOGqZ",
"name": "PineconeApi account"
}
},
"typeVersion": 1
},
{
"id": "cc5e6897-9d0b-4352-a882-5dc23104bf97",
"name": "Insert into Pinecone vector store",
"type": "@n8n\/n8n-nodes-langchain.vectorStorePinecone",
"position": [
856.8347832043557,
520
],
"parameters": {
"mode": "insert",
"options": {
"clearNamespace": true
},
"pineconeIndex": {
"__rl": true,
"mode": "list",
"value": "test-index",
"cachedResultName": "test-index"
}
},
"credentials": {
"pineconeApi": {
"id": "Pp5aPt4JWBkDOGqZ",
"name": "PineconeApi account"
}
},
"typeVersion": 1
},
{
"id": "c358aa73-b60f-453f-a3ef-539faa98c9b5",
"name": "When clicking 'Chat' button below",
"type": "@n8n\/n8n-nodes-langchain.chatTrigger",
"position": [
1360,
521
],
"webhookId": "e259b6fe-b2a9-4dbc-98a4-9a160e7ac10c",
"parameters": [],
"typeVersion": 1
},
{
"id": "d35db9e1-4efc-4980-9814-55fbe65e08fd",
"name": "When clicking 'Test Workflow' button",
"type": "n8n-nodes-base.manualTrigger",
"position": [
76.83478320435574,
520
],
"parameters": [],
"typeVersion": 1
},
{
"id": "4c04f576-e834-467d-98b4-38a2d501d82f",
"name": "Set Google Drive file URL",
"type": "n8n-nodes-base.set",
"position": [
296,
520
],
"parameters": {
"options": [],
"assignments": {
"assignments": [
{
"id": "50025ff5-1b53-475f-b150-2aafef1c4c21",
"name": "file_url",
"type": "string",
"value": "https:\/\/drive.google.com\/file\/d\/11Koq9q53nkk0F5Y8eZgaWJUVR03I4-MM\/view"
}
]
}
},
"typeVersion": 3.3
}
],
"pinData": [],
"connections": {
"Google Drive": {
"main": [
[
{
"node": "Insert into Pinecone vector store",
"type": "main",
"index": 0
}
]
]
},
"Embeddings OpenAI": {
"ai_embedding": [
[
{
"node": "Insert into Pinecone vector store",
"type": "ai_embedding",
"index": 0
}
]
]
},
"OpenAI Chat Model": {
"ai_languageModel": [
[
{
"node": "Question and Answer Chain",
"type": "ai_languageModel",
"index": 0
}
]
]
},
"Embeddings OpenAI2": {
"ai_embedding": [
[
{
"node": "Read Pinecone Vector Store",
"type": "ai_embedding",
"index": 0
}
]
]
},
"Default Data Loader": {
"ai_document": [
[
{
"node": "Insert into Pinecone vector store",
"type": "ai_document",
"index": 0
}
]
]
},
"Vector Store Retriever": {
"ai_retriever": [
[
{
"node": "Question and Answer Chain",
"type": "ai_retriever",
"index": 0
}
]
]
},
"Set Google Drive file URL": {
"main": [
[
{
"node": "Google Drive",
"type": "main",
"index": 0
}
]
]
},
"Read Pinecone Vector Store": {
"ai_vectorStore": [
[
{
"node": "Vector Store Retriever",
"type": "ai_vectorStore",
"index": 0
}
]
]
},
"Recursive Character Text Splitter": {
"ai_textSplitter": [
[
{
"node": "Default Data Loader",
"type": "ai_textSplitter",
"index": 0
}
]
]
},
"When clicking 'Chat' button below": {
"main": [
[
{
"node": "Question and Answer Chain",
"type": "main",
"index": 0
}
]
]
},
"When clicking 'Test Workflow' button": {
"main": [
[
{
"node": "Set Google Drive file URL",
"type": "main",
"index": 0
}
]
]
}
}
}
How to Use an n8n Template
Create a New Workflow
Click "New Workflow" in your n8n dashboard to get started.
Copy & Paste Template
First, copy this template:
Click here to copy the JSON
.
Then, in n8n, click the three dots (···) → "Import from file" and paste the JSON code.
Customize the Nodes
Go through each node in the workflow to update inputs like spreadsheet IDs, email addresses, or message content. Adjust field mappings to match your data.
Grant Access
For nodes that connect to external apps (like Google Sheets or Slack), you'll need to grant access. Connect your accounts using OAuth or an API key and save the credentials in the node.
Test It
Run the workflow by clicking "Execute Node" for each step or "Run Once" for the whole thing. Check the right sidebar to inspect data and debug any errors (they'll show up in red).
Activate Workflow
Once everything works as expected, click the "Activate" toggle to turn your workflow on. You're all set!