Ai Crew To Automate Fundamental Stock Analysis Q&A Workflow

1 Tools

Explore Tool Categories

Find Agencies for This Project

Know a Better Recipe?

Help the community by sharing your proven tool combinations.

Submit a Recipe

About this recipe

A recipe for Ai Crew To Automate Fundamental Stock Analysis Q&A Workflow

Recipe Template

{
    "id": "tMiRJYDrXzpKysTX",
    "meta": {
        "instanceId": "2723a3a635131edfcb16103f3d4dbaadf3658e386b4762989cbf49528dccbdbd",
        "templateId": "1960"
    },
    "name": "Stock Q&A Workflow",
    "tags": [],
    "nodes": [
        {
            "id": "ec3b86be-4113-4fd5-8365-02adb67693e9",
            "name": "Embeddings OpenAI1",
            "type": "@n8n\/n8n-nodes-langchain.embeddingsOpenAi",
            "position": [
                1960,
                720
            ],
            "parameters": {
                "options": []
            },
            "credentials": {
                "openAiApi": {
                    "id": "fOF5kro9BJ6KMQ7n",
                    "name": "OpenAi account"
                }
            },
            "typeVersion": 1
        },
        {
            "id": "42fd8020-3861-4d0f-a7a2-70e2c35f0bed",
            "name": "On new manual Chat Message",
            "type": "@n8n\/n8n-nodes-langchain.manualChatTrigger",
            "disabled": true,
            "position": [
                1620,
                240
            ],
            "parameters": [],
            "typeVersion": 1
        },
        {
            "id": "a9b48d04-691e-4537-90f8-d7a4aa6153af",
            "name": "Sticky Note1",
            "type": "n8n-nodes-base.stickyNote",
            "position": [
                1560,
                120
            ],
            "parameters": {
                "color": 6,
                "width": 903.0896125323785,
                "height": 733.5099670584011,
                "content": "## Step 2: Setup the Q&A \n### The incoming message from the webhook is queried from the Supabase Vector Store. The response is provided in the response webhook. "
            },
            "typeVersion": 1
        },
        {
            "id": "472b4800-745a-4337-9545-163247f7e9ae",
            "name": "Retrieval QA Chain",
            "type": "@n8n\/n8n-nodes-langchain.chainRetrievalQa",
            "position": [
                1880,
                240
            ],
            "parameters": {
                "query": "={{ $json.body.input }}"
            },
            "typeVersion": 1
        },
        {
            "id": "e58bd82d-abc6-44ed-8e93-ec5436126d66",
            "name": "Respond to Webhook",
            "type": "n8n-nodes-base.respondToWebhook",
            "position": [
                2280,
                240
            ],
            "parameters": {
                "options": [],
                "respondWith": "text",
                "responseBody": "={{ $json.response.text }}"
            },
            "typeVersion": 1
        },
        {
            "id": "04bbf01e-8269-47c7-897d-4ea94a1bd1c0",
            "name": "Vector Store Retriever",
            "type": "@n8n\/n8n-nodes-langchain.retrieverVectorStore",
            "position": [
                2020,
                440
            ],
            "parameters": {
                "topK": 5
            },
            "typeVersion": 1
        },
        {
            "id": "feee6d68-2e0d-4d40-897e-c1d833a13bf2",
            "name": "Webhook1",
            "type": "n8n-nodes-base.webhook",
            "position": [
                1620,
                420
            ],
            "webhookId": "679f4afb-189e-4f04-9dc0-439eec2ec5f1",
            "parameters": {
                "path": "19f5499a-3083-4783-93a0-e8ed76a9f742",
                "options": [],
                "httpMethod": "POST",
                "responseMode": "responseNode"
            },
            "typeVersion": 1.1
        },
        {
            "id": "1b8d251f-7069-4d7d-b6d6-4bfa683d4ad1",
            "name": "When clicking \"Execute Workflow\"",
            "type": "n8n-nodes-base.manualTrigger",
            "position": [
                280,
                260
            ],
            "parameters": [],
            "typeVersion": 1
        },
        {
            "id": "b746a7a4-ed94-4332-bf7b-65aadcf54130",
            "name": "Google Drive",
            "type": "n8n-nodes-base.googleDrive",
            "position": [
                580,
                260
            ],
            "parameters": {
                "fileId": {
                    "__rl": true,
                    "mode": "list",
                    "value": "1LZezppYrWpMStr4qJXtoIX-Dwzvgehll",
                    "cachedResultUrl": "https:\/\/drive.google.com\/file\/d\/1LZezppYrWpMStr4qJXtoIX-Dwzvgehll\/view?usp=drivesdk",
                    "cachedResultName": "crowdstrike.pdf"
                },
                "options": [],
                "operation": "download"
            },
            "credentials": {
                "googleDriveOAuth2Api": {
                    "id": "1tsDIpjUaKbXy0be",
                    "name": "Google Drive account"
                }
            },
            "typeVersion": 3
        },
        {
            "id": "83a7d470-f934-436d-ba3f-1ae7c776f5a5",
            "name": "Binary to Document",
            "type": "@n8n\/n8n-nodes-langchain.documentBinaryInputLoader",
            "position": [
                860,
                480
            ],
            "parameters": {
                "loader": "pdfLoader",
                "options": []
            },
            "typeVersion": 1
        },
        {
            "id": "b52b4a90-99a1-49cc-a6f0-7551d6754496",
            "name": "Recursive Character Text Splitter",
            "type": "@n8n\/n8n-nodes-langchain.textSplitterRecursiveCharacterTextSplitter",
            "position": [
                860,
                640
            ],
            "parameters": {
                "options": [],
                "chunkSize": 3000,
                "chunkOverlap": 200
            },
            "typeVersion": 1
        },
        {
            "id": "b525e130-2029-4f55-a603-1fdc05a19c17",
            "name": "Embeddings OpenAI",
            "type": "@n8n\/n8n-nodes-langchain.embeddingsOpenAi",
            "position": [
                1160,
                480
            ],
            "parameters": {
                "options": []
            },
            "credentials": {
                "openAiApi": {
                    "id": "fOF5kro9BJ6KMQ7n",
                    "name": "OpenAi account"
                }
            },
            "typeVersion": 1
        },
        {
            "id": "5358c53f-55f9-431d-8956-c6bae7ad25bc",
            "name": "Sticky Note",
            "type": "n8n-nodes-base.stickyNote",
            "position": [
                540,
                120
            ],
            "parameters": {
                "color": 6,
                "width": 772.0680602743597,
                "height": 732.3675002130781,
                "content": "## Step 1: Upserting the PDF\n### Fetch file from Google Drive, split it into chunks and insert into Supabase index\n\n"
            },
            "typeVersion": 1
        },
        {
            "id": "fb91e2da-0eeb-47a5-aa49-65bf56986857",
            "name": "Qdrant Vector Store",
            "type": "@n8n\/n8n-nodes-langchain.vectorStoreQdrant",
            "position": [
                940,
                260
            ],
            "parameters": {
                "mode": "insert",
                "options": [],
                "qdrantCollection": {
                    "__rl": true,
                    "mode": "id",
                    "value": "=crowd"
                }
            },
            "credentials": {
                "qdrantApi": {
                    "id": "U5CpjAgFeXziP3I1",
                    "name": "QdrantApi account"
                }
            },
            "typeVersion": 1
        },
        {
            "id": "89e14837-d1fc-4b1e-9ebc-7cf3e7fd9a70",
            "name": "Qdrant Vector Store1",
            "type": "@n8n\/n8n-nodes-langchain.vectorStoreQdrant",
            "position": [
                1980,
                600
            ],
            "parameters": {
                "qdrantCollection": {
                    "__rl": true,
                    "mode": "id",
                    "value": "={{ $json.body.company }}"
                }
            },
            "credentials": {
                "qdrantApi": {
                    "id": "U5CpjAgFeXziP3I1",
                    "name": "QdrantApi account"
                }
            },
            "typeVersion": 1
        },
        {
            "id": "c619245b-5ea0-4354-974d-21ec6b8efa93",
            "name": "OpenAI Chat Model",
            "type": "@n8n\/n8n-nodes-langchain.lmChatOpenAi",
            "position": [
                1880,
                460
            ],
            "parameters": {
                "options": []
            },
            "credentials": {
                "openAiApi": {
                    "id": "fOF5kro9BJ6KMQ7n",
                    "name": "OpenAi account"
                }
            },
            "typeVersion": 1
        },
        {
            "id": "e4aa780d-8069-4308-a61f-82ed876af71a",
            "name": "Sticky Note2",
            "type": "n8n-nodes-base.stickyNote",
            "position": [
                -560,
                120
            ],
            "parameters": {
                "color": 6,
                "width": 710.9124489067698,
                "height": 726.4452519516944,
                "content": "## Start here: Step-by Step Youtube Tutorial :star:\n\n[![Building an AI Crew to Analyze Financial Data with CrewAI and n8n](https:\/\/img.youtube.com\/vi\/pMvizUx5n1g\/sddefault.jpg)](https:\/\/www.youtube.com\/watch?v=pMvizUx5n1g)\n"
            },
            "typeVersion": 1
        }
    ],
    "active": true,
    "pinData": [],
    "settings": [],
    "versionId": "463aec94-26a6-436d-8732-fc01d637c6ae",
    "connections": {
        "Webhook1": {
            "main": [
                [
                    {
                        "node": "Retrieval QA Chain",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Google Drive": {
            "main": [
                [
                    {
                        "node": "Qdrant Vector Store",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Embeddings OpenAI": {
            "ai_embedding": [
                [
                    {
                        "node": "Qdrant Vector Store",
                        "type": "ai_embedding",
                        "index": 0
                    }
                ]
            ]
        },
        "OpenAI Chat Model": {
            "ai_languageModel": [
                [
                    {
                        "node": "Retrieval QA Chain",
                        "type": "ai_languageModel",
                        "index": 0
                    }
                ]
            ]
        },
        "Binary to Document": {
            "ai_document": [
                [
                    {
                        "node": "Qdrant Vector Store",
                        "type": "ai_document",
                        "index": 0
                    }
                ]
            ]
        },
        "Embeddings OpenAI1": {
            "ai_embedding": [
                [
                    {
                        "node": "Qdrant Vector Store1",
                        "type": "ai_embedding",
                        "index": 0
                    }
                ]
            ]
        },
        "Retrieval QA Chain": {
            "main": [
                [
                    {
                        "node": "Respond to Webhook",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Qdrant Vector Store1": {
            "ai_vectorStore": [
                [
                    {
                        "node": "Vector Store Retriever",
                        "type": "ai_vectorStore",
                        "index": 0
                    }
                ]
            ]
        },
        "Vector Store Retriever": {
            "ai_retriever": [
                [
                    {
                        "node": "Retrieval QA Chain",
                        "type": "ai_retriever",
                        "index": 0
                    }
                ]
            ]
        },
        "On new manual Chat Message": {
            "main": [
                [
                    {
                        "node": "Retrieval QA Chain",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "When clicking \"Execute Workflow\"": {
            "main": [
                [
                    {
                        "node": "Google Drive",
                        "type": "main",
                        "index": 0
                    }
                ]
            ]
        },
        "Recursive Character Text Splitter": {
            "ai_textSplitter": [
                [
                    {
                        "node": "Binary to Document",
                        "type": "ai_textSplitter",
                        "index": 0
                    }
                ]
            ]
        }
    }
}

How to Use an n8n Template

1

Create a New Workflow

Click "New Workflow" in your n8n dashboard to get started.

2

Copy & Paste Template

First, copy this template: Click here to copy the JSON .
Then, in n8n, click the three dots (···) → "Import from file" and paste the JSON code.

3

Customize the Nodes

Go through each node in the workflow to update inputs like spreadsheet IDs, email addresses, or message content. Adjust field mappings to match your data.

4

Grant Access

For nodes that connect to external apps (like Google Sheets or Slack), you'll need to grant access. Connect your accounts using OAuth or an API key and save the credentials in the node.

5

Test It

Run the workflow by clicking "Execute Node" for each step or "Run Once" for the whole thing. Check the right sidebar to inspect data and debug any errors (they'll show up in red).

6

Activate Workflow

Once everything works as expected, click the "Activate" toggle to turn your workflow on. You're all set!